| 翻訳と辞書 | Legendre's equation| Legendre's equation  : ウィキペディア英語版 | 
 
 In mathematics, Legendre's equation is the Diophantine equation
 :
 The equation is named for Adrien Marie Legendre who proved in 1785 that it is solvable in integers ''x'', ''y'', ''z'', not all zero, if and only if
 −''bc'', −''ca'' and −''ab'' are quadratic residues modulo ''a'', ''b'' and ''c'', respectively, where ''a'', ''b'', ''c'' are nonzero, square-free, pairwise relatively prime integers, not all positive or all negative .
 ==References==
 
 * L. E. Dickson, ''History of the Theory of Numbers.  Vol.II: Diophantine Analysis'', Chelsea Publishing, 1971, ISBN 0-8284-0086-5.  Chap.XIII, p. 422.
 * J.E. Cremona and D. Rusin, "Efficient solution of rational conics", Math. Comp., 72 (2003) pp. 1417-1441.  ()
 
 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』
 ■ウィキペディアで「Legendre's equation」の詳細全文を読む
 
 
 
 スポンサード リンク
 
 | 翻訳と辞書 : 翻訳のためのインターネットリソース | 
 | Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
 
 | 
 |